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Abstract

Phase diagrams (cloud point curves, critical points, tie lines for constant critical composition) and interfacial tensions as a function of
temperature were measured for solutions of two random copolymers: poly(dimethylsiloxane-ran-methylphenylsiloxane) [I] and poly(sty-
rene-ran-acrylonitrile) [II]. Acetone and anisole served as solvents for I and toluene for II; all solutions exhibit UCSTs between 300 and
310 K. The phase separation behavior can be well modeled if one accounts for the molecular and chemical non-uniformities of the random
copolymers used in this study. The interfacial tensionss differ most markedly from that of comparable homopolymer solutions in their
correlations � stt

m
; wheret � �Tc 2 T�=Tc: For all three systemsst results considerably less and the critical exponentm varies widely

from 0.68 to 2.18 (in contrast to the normal case wherem is on the order of 1.3–1.5). Both observations are explained in terms of the
capability of copolymers to minimize the interfacial energy by suitably arranging their different monomeric units. Model calculations were
performed in terms of the energy required to transfer molecules from one phase to the other, assembling the average polymer–solvent
interaction parameter from the three binary interaction parametersgij, required to describe copolymer solutions. These results demonstrate
that the experimentally observed particularities of copolymers are more likely dominated by dissimilarities in the concentration dependence
of gij than by unlike temperature dependencies. Particularities in the correlations of the length of the tie line witht ands , respectively, are
also discussed.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present investigation was undertaken with the
primary objective of checking whether the interfacial prop-
erties of demixed copolymer solutions differ fundamentally
from that of homopolymer solutions. In view of the fact that
the thermodynamic variability should be much larger in the
case of macromolecules consisting of two different types of
mers. In terms of interactions between the different kinds of
segments (fixed in their size by the volume of the solvent)
three interaction parameters are required to define the
system instead of one. It is therefore not far-fetched to
expect dissimilarities.

Unlike numerous studies concerning the demixing and
the interfacial behavior of phase separated homopolymer
solutions we were unable to find similar work for random
copolymers in the literature. One possible reason is the fact

that molecularly uniform copolymers are not readily avail-
able. Research in this area is therefore complicated by the
necessity to account not only for the distribution of molar
masses but also for that of chemical composition. In the
present work we have dealt with that problem in terms of
continuous thermodynamics. Furthermore we have made all
interfacial measurements with solutions of over-all critical
composition since the coexistence curve is only uninter-
rupted under that condition and one can study experimen-
tally how s approaches zero asT moves towardsTc (for a
more detailed discussion confer Ref. [1]).

2. Experimental

2.1. Materials

The random copolymer poly(dimethylsiloxane-ran-
methylphenylsiloxane) P(DMS0.9-ran-MPS0.1)41w was
polymerized anionically and purchased from Dow Corning
Corporation (Midland, USA; commercial name: 510 Fluid
500 cSt).Mw (41 kg/mol) andMn (9 kg/mol) have been
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determined by GPC (PDMS-standards and universal cali-
bration). The content of MPS (10%) was measured by
NMR spectroscopy. Poly(styrene-ran-acrylonitrile) P(S0.6-
ran-AN0.4) 147w stems from BASF (Ludwigshafen,
Germany). It is also a random copolymer and contains
40% AN. Mw is according to light scattering in tetrahydro-
furane (THF) 147 kg/mol,Mn from osmotic pressure
measurements in THF amounts to 90 kg/mol. PDMS
24.5w is a product of Wacker GmbH (Muenchen, Germany;
trade name: PDMS AK350) withMw � 24:5 kg=mol and
Mn � 11 kg=mol; as determined by GPC. Phenetole (PTL),
anisole (ANL), toluene (TL), and acetone (AC) were dried
over molecular sieves before use.

2.2. Procedures

Cloud point curves and interfacial tensions(spinning-
drop method) were determined as already described in
Ref. [2].

Critical points: these data were obtained from phase
volume ratios. In this method [3] homogeneous solutions
of different polymer concentrations are cooled as little as
possible below their cloud point to excrete a macroscopi-
cally sizeable second phase. The phase volumes are then
determined and the logarithm of the phase volume ratio is
plotted as a function of composition. From the straight lines
obtained one can read the critical concentration from the
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Nomenclature

DGR residual segment molar Gibbs energy of mixing (Eq. (5))
DG segment-molar Gibbs energy of mixing (Eq. (1))
f volume fraction of A segments contained in the copolymer
gij interaction parameter referring to segmentsi and j
k 1=�Mw=Mn 2 1�
M molar mass
N number of segments a copolymer contains
V molar volume
X number of monomeric units a copolymer contains
y weight fraction of less abundant monomeric unit in a copolymer species
ŷ average weight fraction of less abundant monomeric unit
Greek symbols
Dw length of tie line
b s critical exponent (Eq. (8))
1 hump energy
1 cd parameter, measuring the width of the chemical distribution
m critical exponent (Eq. (10))
s interfacial tension
t reduced temperature� �Tc 2 T�=Tc

f critical exponent (Eq. (21))
w segment-mole fraction
z critical exponent (Eq. (20))
Subscripts
1 solvent
2 or p copolymer
o momomer
c critical
n number average
w weight average
A, B type of monomer
Superscripts
p hard core
Adjustable parameter
A, AA, B, BB Eq. (22)
c, d Eq. (6)
b0, b1 Eq. (7)
b1A, b1B, p1A, p1B Eq. (23)
g1A, g2 Eq. (5)



condition of equal volume of the coexisting phases irrespec-
tive of the shape of the cloud point curve.

Tie lines:polymer solutions of critical composition were
slowly cooled from the homogeneous region to a tempera-
ture where the liquid demixes. After completion of macro-
scopic phase separation (typically requiring one to two
days) adequate amounts of each of the totally clear coexist-
ing phases were taken by means of a syringe and weighted.
The composition of these liquids was then determined by
evaporation of the solvent and weighting of the remaining
polymer. In order to check for possible fractionation with
respect to chemical composition, the polymers were also
analyzed by NMR.

3. Theoretical background

3.1. Phase diagram

In order to account for molecularly or/and chemically
non-uniform polymers, phase equilibria of the polymer
solutions are often described by means of continuous ther-
modynamics, a method using continuous distribution func-
tions [4,5].

For the present solutions of random copolymers, consist-
ing of two types of monomeric units, the segment-molar
Gibbs free energyDG=RT is given by Eq. (1)

DG
RT
� 1 2 w2

N1

1
ZN2;o

N2;u

Zy�1

y�0

w2W�N2; y�
N2

ln w2W�N2; y� dy dN2

1 DGR �1�
w2 is the segment-mole fraction of the copolymer in the
solution, N1 and N2 are the segment numbers of solvent
and copolymer, respectively, andDGR is the residual
segment molar Gibbs free energy of the system. To account
for the two possible types of polydispersity (chain length
and copolymer composition) we use the divariant distribu-
tion functionW�N2; y� proposed by Stockmayer [6]

W�N2; y� � kk11
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 !" #
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The first part of Eq. (2) corresponds to a generalized
Schulz–Flory function.N2,n is the number average of the
segment numbers calculated from the number average of
the molecular volume of the copolymer using the van-der-
Waals volume of the different monomers, weighted by the
chemical composition and normalized to the van-der-Waals

volume of the solvent. The parameterk is defined as

k � Mw

Mn
2 1

� �21

�3�

and G constitutes the gamma function frequently used in
statistics. The second part of Eq. (2) constitutes a Gaussian
distribution of the chemical composition (mass fractiony of
the minor component of a certain polymer species) aroundŷ;
the average chemical composition of a random copolymer
consisting ofXA units of type A andXB units of type B
defined as

ŷ� XBMo;B

XAMo;A 1 XBMo;B
�4�

and1 cd measures the width of the Gaussian distribution.
The segment molar residual Gibbs free energy of the

system,DGR, is modeled as described in Ref. [4]

DGR

RT
� L�w2�x�T��1 1 g1ŷ 1 g2ŷ2� �5�

with

L�w2� � w2�1 2 w2��1 1 cw2 1 dw2
2� �6�

and

x�T� � b0 1
b1

T
�7�

whereg1 andg2 measure the influences of chemical compo-
sition onDGR andL(w2) describes its concentration depen-
dence by means of the two empirical parametersc and d.
Temperature influences are given byb0 andb1.

Cloud point curves are according to theory defined as the
boundary between the homogeneous and the heterogeneous
region of a system. The amount of matter contained into the
segregated phase (00) at the cloud point temperature is so
insignificant that the composition of the main phase (0)
can be considered to be identical with that of the starting
solution. Conversely the composition of the infinitely small
amounts of the first secreted minor phases yield shadow
curves.

Spinodal curves and critical points are calculated from
continuous thermodynamics [7–10]. They are determined
by means of the two additional equations resulting form
the condition that the second (spinodal) and the second
plus third (critical point) derivatives of the segment-molar
Gibbs free energy (Eq. (1)) with respect to composition (in
the actual casew2) become zero.

3.2. Interfacial tension

The following relations should hold true for near critical
conditions [11]. The lengthDw of the tie line is related to the
relative distance to the critical temperature,t �
�Tc 2 T�=Tc; according to Eq. (8). The interfacial tension
s as a function ofDw is given by Eq. (9) and the
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interrelation betweens andt by Eq. (10)

Dw � Dwt�t�bs �8�

s � sDw�Dw�m=bs �9�

s � stt
m �10�

The values of the critical exponentsb s andm , resulting from
the mean-field theory [12–14] and from the Ising model
[15] are collected in Table 1.

4. Results and discussion

4.1. Phase diagrams

Cloud point curves and critical points of the systems AC/
P(DMS0.9-ran-MPS0.1) 41w, ANL/P(DMS0.9-ran-MPS0.1)
41w and TL/P(S0.6-ran-AN0.4) 147w have been measured
as described. In order to calculate their phase diagrams,
N1, the number of segments the solvent consists of, and
the parametersN2,n, ŷ; k and1 cd, characterizing the copoly-
mer, have to be known. In all casesN1 was set equal to unity
and the hard-core volume, as calculated from the van der
Waals increments reported by Bondi [16] and Gottlieb [17],
was taken as the segmental volume.

For the copolymer we introduce a hypothetical (aver-
aged) monomeric unit and calculate its a hard-core volume
according to

Vp
o;2 � XA

XA 1 XB
Vp

o;A 1
XB

XA 1 XB
Vp

o;B �11�

with the molar massMo,2

Mo;2 � XA

XA 1 XB
Mo;A 1

XB

XA 1 XB
Mo;B �12�

N2,n, the number of hard-core segments of the copolymer,
can then be calculated from the number average molar mass
of the copolymer, as obtained from GPC, by means of the
relations

Vp
2 � Mn�GPC� Vp

o;2

Mo;2
�13�

and

N2;n � Vp
2

Vp
1

�14�

AC/P(DMS0.9-ran-MPS0.1) 41w:the molar hard-core
volume of AC is 43.54 cm3/mole. The molar volume of
the “mixed” monomeric unit of the copolymer isVp

o;2 �
47:31 cm3

=mol and its molar massMo;2 � 80:2 g=mol: The
molar volume of the present copolymer results to 5368 cm3/
mol yielding N2;n � 123:3: The mass average chemical
compositionŷ amounts to 0.15 andk � 0:286: The chemical
non-uniformity, quantified by1 cd, could in principle be
calculated from the kinetic parameters of the copolymeriza-
tion [4]. Since this information was unavailable we have set
1cd � 0:25; a value which is typical for a random copolymer
[4].

Eq. (5) contains six parameters: two (b0, b1) for the
temperature dependence of the residual segment molar
Gibbs energy of mixing, two (c, d) for its variation with
concentration and two (g1, g2) to quantify the influence of
the chemical composition of the copolymer. Not all of them
are, however, required to model the measured cloud point
curve of the present system. It suffices to account either for
the concentration-dependence or for the dependence on
chemical composition.

Fig. 1 shows the experimental cloud points and tie lines in
comparison to the cloud point curve and shadow curve
calculated by means of the following parameters

b0 � 20:62; b1 � 278:9 K; g1 � 4:169;

g2 � c� d � 0
�15�

where these values were obtained by adjusting such that
they fit the experimental results best. The fact that the criti-
cal point is—in contrast to truly binary systems—not situ-
ated in the maximum of the cloud point curve but shifted
towards higher polymer concentration is well know and
reflects the non-uniformity of the copolymer. Similarly
one branch of the coexistence curve (for critical over-all
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Table 1
Values of the critical exponents [11,14] resulting from mean-field theory
and Ising model

Mean-field theory Ising model

b s 0.5 0.32
m 1.5 1.26
m=bs 3.0 3.88

Fig. 1. Phase diagram of the system AC/P(DMS0.9-ran-MPS0.1) 41w. Cloud
points (triangles), tie lines (for constant critical over-all concentration, the
dotted line is just a guide for the eye) and the critical point (full square)
represent experimental data. The full line gives the calculated cloud point
curve and the dashed line the corresponding shadow curve.



composition) is located inside and the other one outside the
area defined by the cloud point curve due to polymer frac-
tionation associated with phase separation.

ANL/P(DMS0.9-ran-MPS0.1)41w:the hard-core volume
of ANL amounts to 62.7 cm3/mol. The polymer is identical
with the last example but the larger solvent leads to a smal-
ler value ofN2;n � 85:6: For this system we give an example
for the equivalence of adjustingg1 and g2 (Eq. (5)) and
setting c� d � 0 (Eq. (6)) with the opposite procedure.
The measured cloud point curve can either be modeled by:

b0 � 20:62; b1 � 291 K; g1 � 3:99;

g2 � c� d � 0
�16�

or

b0 � 0:74; b1 � 18:35 K; g1 � g2 � 0;

c� 0:352; d � 0:2
�17�

Fig. 2 shows the results for Eq. (17).
TL/P(S0.6-ran-AN0.4):the hard-core volume of TL is

59.5 cm3/mol, the value for the average copolymer segment

reads 50.4 cm3/mol. By means of the corresponding average
mass of the segment 83.6 g/mol one obtainsN2;n � 921:78:
The copolymer is characterized byŷ� 0:25; k � 1:515 and
1cd � 0:25: The parameter set used for the calculations
shown in Fig. 3 is

b0 � 0:05; b1 � 61:28 K; g1 � 4:65;

g2; c;d � 0
�18�

Cloud point curves and spinodals plus critical conditions
calculated on the basis of the above equations for the three
copolymer solutions under consideration are compared in
Fig. 4. Reasonable agreement between calculated and
experimental cloud point curves can be achieved in all
cases, accounting for the distribution of chain lengths via
Eq. (2), regardless of whether either the influences of chemi-
cal composition or the concentration-dependence is
neglected in the computation ofDGR

=RT: Since the analysis
of the copolymers contained in the coexisting phases by
means of NMR did not yield any indication for fractionation
according to the chemical composition, the latter variant
appears more realistic. However, it requires four parameters
to model the phase diagrams (b0, b1, c andd), in contrast to
the former alternative which needs only three (b0, b1 and
g1).

The shift of the critical composition out of the maxima of
the cloud point curves towards higher polymer concentra-
tion results from the polydispersities of the present polymers
and is in accord with experimental experience. The much
lower critical polymer concentration observed for the
system TL/P(S0.6-ran-AN0.4) 147w as compared with that
of solutions of P(DMS0.9-ran-MPS0.1) 41w is due to the
differences in the molar masses of the polymer. An analo-
gous explanation for the disparity of the critical composi-
tions for AC and ANL does, however, not hold true, since
the number of segments calculated for P(DMS0.9-ran-
MPS0.1) 41w from the molar volume of AC is more than
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Fig. 2. As Fig. 1 but for the system ANL/P(DMS0.9-ran-MPS0.1) 41w.

Fig. 3. As Fig. 1 but for the system TL/P(S0.6-ran-AN0.4) 147w.

Fig. 4. Comparison of the phase diagrams of the three copolymer solutions
under consideration as modeled by means of the measured cloud point
curves and critical compositions.



40% larger than in the case of ANL and yet the critical point
is higher for AC.

4.2. Interfacial tension

Interfacial tensions were exclusively measured for critical
over-all compositions of the copolymer solutions. Data
analysis with respect to critical exponents starts with
diagrams relating the length of the tie lines,Dw; and t ,
the relative temperature distance toTc (Fig. 5, Eq. (8)).
Then we investigate the interrelation ofs andDw (Fig. 6,
Eq. (9)). Finally, it is examined whether the dependencies of
s on t observed with the present copolymer systems, exhi-
bit special features as compared with homopolymer solu-
tions (Fig. 7, Eq. (10)). In order to eliminate some of the
experimental errors in the length of the tie lines, we use the
data read from the smooth coexistence curves of Figs. 1–3
for the following evaluation.

The critical exponents (b s) of the siloxane-copolymer
containing systems show good agreement with the value

predicted by the mean-field-theory in contrast to the beha-
vior of TL/P(S-ran-AN) which is better described by the
Ising model [15] (cf. Table 1). The observed approximately
parallel displacement of the lines, corresponding to different
Dwt values in Eq. (8), should reflect the heats of mixing of
the systems. This consideration can be rationalized by the
fact that a given constant penetration into the two-phase
regime in terms of constantt � �Tc 2 T�=Tc does not fix
the solvent quality as expressed by the length of the tie line.
On the basis of the lattice theory one can calculate a general-
ized phase diagram in which the Flory–Huggins interaction
parameterg replacesT. How this phase diagram turn into a
real case depends on the temperature dependence ofg, i.e.
reflects the heat of mixing.

These considerations can be directly checked by means of
the binodals (coexistence curves) for critical over-all
concentrations of the systems shown in Figs. 1–3. Accord-
ing to that information the heat of mixing is much smaller
for the system TL/P(S-ran-AN) than for the other two
copolymer solutions for which the enthalpy effects are
comparable. This result is in agreement with the relative
position of the lines in Fig. 5. With the solvent TL one
requires much largert values to realize a certain length of
the tie lineDw than with AC or ANL.

Fig. 6 shows the dependence of interfacial tensions on
the length of tie lines according to Eq. (9). In contrast tob s

the ratio m=bs resulting from the present evaluation can
neither be described by the mean-field theory, nor by the
Ising model. For TL/P(S-ran-AN) and AC/P(DMS-ran-
MPS) the values are considerably too high and for ANL/
P(DMS-ran-MPS) it is too low (cf. Table 1). In the assess-
ment of this result it must, however, be borne in mind that
the experimental errors lead to the largest uncertainty in the
critical exponents.

Fig. 7 deals with the correlation betweens and reduced
temperaturet as described by Eq. (10). The diagram shows
a comparison between the three-copolymer systems and the
homopolymer system PTL/PDMS 24.5w. The most striking
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Fig. 5. Correlation betweenDw , the length of the tie lines, andt � �Tc 2

T�=Tc; the relative distance ofT to the critical temperature. TheDw values
were read from the coexisting curves shown in the phase diagrams (dotted
lines in Figs. 1–3).

Fig. 6. Correlation betweens andDw according to Eq. (9).

Fig. 7. Correlation betweens andt according to Eq. (10). For comparison
such a dependence is also shown for a typical homopolymer solution.



observation consists in the fact that the interfacial tensions
of the copolymer solutions are in all three cases lower (up to
a factor of 0.1) than those of the homopolymer system for a
given reduced temperature. This observation can be under-
stood in terms of phenomenological thermodynamics by the
additional degree of freedom of copolymers as compared
with homopolymers to arrange the segments in the inter-
phase between the two coexisting bulk phases. The mono-
meric unit interacting more favorably with the solvent will
accumulate at the interface adjacent to the dilute solution to
the extent the entropy cost permits it. This situation leads to
an additional reduction of the Gibbs energy of the interfacial
layer.

In addition to the already discussed shift of the interrela-
tion betweens andt to lowers values one also observes
characteristic differences in the critical exponentm . With
ANL/P(DMS-ran-MPS) the value lies between the predic-
tion of the mean-field theory (1.5) and the Ising model
(1.26). For AC/P(DMS-ran-MPS) the observedm � 2:18
exceeds these values considerably, whereasm � 0:68 for
TL/P(S-ran-AN) remains well below the forecasts. In the
next section we present some model calculations performed
to rationalize the present findings.

4.3. Model calculations

So far all thermodynamic considerations were based on
continuous thermodynamics which starts from the residual
Gibbs energy of mixing and does not use Flory–Huggins
interaction parameters between the three different species of
the present systems explicitly. Since it appears obvious that
the particularities of random copolymers made of A and B
units as compared with homopolymers should result from
the fact that three of these parameters are required to
describe copolymer solutions of the present type, we intro-
duce the composed interaction parameterg1P between the
solvent 1 and the “averaged” copolymer P according to the

following relation [18] for the subsequent discussion:

g1P� f·g1A 1 �1 2 f �·g1B 2 f �1 2 f �gAB �19�
wheref is the volume fraction of A segments contained in
the copolymer.

Furthermore we make use of two additional scaling laws
formulated for the reduced hump energy1 [19,20] (for its
definition confer Fig. 8). That quantity is given by the area
located between the composition dependence of the Gibbs
energy of thehomogeneoussystem and the double tangent
to this function and constitutes a measure for the energy
required transferring molecules from one coexisting phase
to the other. These relations read

1 � 1tt
z �20�

s � s11
f �21�

Since molecular or chemical non-uniformities of the
copolymers should not change the principal features, the
model calculations are restricted to a truly binary system.
The interaction parameters of Eq. (19) where on the other
hand chosen as close to reality as possible by adjusting them
to the measured cloud point curve for the systems AC/
PDMS [21] and AC/P(DMS-ran-MPS) (cf. Fig. 1). For
that purpose the precipitation threshold was taken as the
critical point. The number of segments of PDMS was set
NPDMS� 404 and NP�DMS-ran-MPS� � 123:3 and f � 0:9
chosen identical with the values used in the previous
section. The results demonstrate that the last term of Eq.
(19) can be neglected as compared with the first two
summands.

By means of the subsequent model calculations we want
to check the validity of the hypothesis that the dissimilarities
in the behavior of copolymers A-ran-B and of homopoly-
mers should be due to the fact thatg1P is composed of three
interaction parameters, which may vary with temperature
or/and composition in very different ways. Since we do
not know of any reliable possibilities for a direct theoretical
predictions ofs from the knowledge of temperature and
composition dependent interaction parameters we base the
subsequent considerations on hump energies [19] which are
directly related tos .

Different temperature dependencies:The following
simplified expression (neglect ofgAB) was used to describe
the copolymer:

g1P� f �A 1 AA=T�1 �1 2 f ��B 1 BB·T� �22�
The parametersA andAA, characterizing the homopoly-

mer A, known from vapor pressure measurements [21],
were slightly changed to yield the critical data. The effects
of a variation ofB andBB, accounting for the contributions
of the comonomeric units B, are given in Fig. 9 which shows
the results of such calculations in terms of the correlation
between1 andt (Eq. (20)).

The critical exponent of the solvent homopolymer system
�z � 2:56� is in good agreement with mean-field theory
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Fig. 8. Scheme illustrating how the reduced hump energy1 is calculated
from the variation ofG; the segment molar Gibbs energy of mixing, with
w2, the volume fraction of polymer.



�z � 2:5; Ising-model:z � 2:22�: In order to create smaller
1 values for the copolymer (corresponding to the experi-
mentally observed lowers of copolymer solutions) it is
necessary to chose B highly negative. The slopes of these
lines in Fig. 9, however, remain unchanged. It appears there-
fore unlikely that the experimentally observed changes inm
are primarily due to differences in the temperature depen-
dence of the interaction parameters between the solvent and
the two kinds of monomeric units.

Different concentration dependencies:these calculations
were performed modeling the concentration dependence in
the binary interaction parametersg1A andg1B according to
Enders [19]

g1P� f·b1A
�1 2 p1A�

T�1 2 p1A·f·wp�

1 �1 2 f �b1B
�1 2 p1B�

T�1 2 p1B·�1 2 f �·wP� �23�

whereb1A andp1A were chosen such that they reproduce the
critical data of the homopolymer A and yieldz � 2:42 (a
value between the mean-field and the Ising prediction). The
parametersb1B andp1B—characterizing the contribution of
the comonomer B—were then varied conjointly to maintain
the critical point. The results of these computations for
the parameters indicated in the graph can be seen from
Fig. 10.

The outcome demonstrates that dissimilar composition
dependencies of the interaction parameters between the
solvent and the two monomeric units may indeed not only
shift the interrelation of ln1 and lnt in an approximately
parallel manner, but that they can also change the critical
exponentz (corresponding to the experimentally deter-
minedm ) markedly.

5. Conclusions

The present experimental results clearly demonstrate
pronounced differences in the interfacial properties of
demixed copolymer solutions as compared with demixed
homopolymer solutions. For given depth of penetration
into the two phase regime (constantt ) and critical over-
all composition the interfacial tension results much lower
in the case of copolymers and some critical exponents vary
within much wider limits. Both observations can be ratio-
nalized in terms of the additional possibilities of copolymers
to arrange themselves within the interphase such that the
Gibbs energy becomes even smaller. Model calculations
performed to quantify these effects indicate that there
exist at least two options to account for the additional
features, namely dissimilar dependencies of the interaction
parameters between the solvent and the two types of mers on
temperature and composition. According to the present
computations the former possibility acts primarily towards
a reduction ofs whereas the latter also influences the criti-
cal exponents.

The differences in the behavior of copolymers and homo-
polymers were found to be much more pronounced in the
case ofs�t� than fors�Dw�: This observation constitutes an
additional argument for the utilization of the length of the tie
line instead of the reduced temperature distance to the criti-
cal point for the prediction of interfacial tensions. The
advantage of that preference has already become very
obvious with solutions of polydisperse polymers [1]. Their
critical temperatures differ largely from the extrema of the
two phase region so thatt changes its sign from positive to
negative as one surpasses the critical temperature and
approaches the homogeneous region of the system. For
the same reason the correlation betweens andt must fail
for the present polydisperse copolymers. Theory considers
the system to be homogeneous in case ofT . Tc; in contrast
to reality. Notwithstanding this situation, the correlation
betweens andDw remains reasonable [1].
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Fig. 9. Correlation between the reduced hump energy1 andt according to
Eq. (20). The curves are computed for a model system under the assumption
that the temperature dependence of the interaction parameter between the
solvent and the two different mers is very dissimilar (g1P of Eq. (22)).

Fig. 10. As Fig. 9 but assuming largely different concentration dependen-
cies of these interaction parameters (g1P of Eq. (23)).
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